1) Evaluate [tex]\displaystyle\int_{0}^{1}{\int_{y}^{1}{\sin(x^2)\,dx}\,dy}[/tex]
It has been a while...
IIRC, [tex]\displaystyle\int\sin x dx = -\cos x[/tex], which when combined with the substitution rule...
u = x^2
du = 2dx -> dx = 1/2 du
[tex]\displaystyle\int_{y}^{1}{\sin\,x^2\,dx}[/tex]
[tex]\displaystyle\int_{y^2}^{1^2}{\sin\,u\,\frac{1}{2}du}[/tex]
[tex]\displaystyle\frac{1}{2}\int_{y^2}^{1}{\sin\,u\,du}[/tex]
[tex]\displaystyle\frac{1}{2}\left[-cos\,u\right]_{y^2}^{1}[/tex]
[tex]\displaystyle\frac{1}{2}\left[-\cos\,1+\cos\,y^2\right][/tex]
Finally,
[tex]\displaystyle\int_{0}^{1}{\frac{1}{2}\left[-\cos\,1+\cos\,y^2\right]\,dy}[/tex]
[tex]\displaystyle\frac{1}{2}\int_{0}^{1}{\cos\,y^2\,dy}-\frac{1}{2}\int_{0}^{1}{\cos\,1\,dy}[/tex]
[tex]\displaystyle\frac{1}{2}\int_{0}^{1}{\cos\,y^2\,dy}-\frac{1}{2}\cos\,1[/tex]
u = y^2
du = 2dy -> dy = 1/2 du
[tex]\displaystyle\frac{1}{2}\int_{0^2}^{1^2}{\cos\,u\,\frac{1}{2}du}-\frac{1}{2}\cos\,1[/tex]
[tex]\displaystyle\frac{1}{4}\int_{0}^{1}{\cos\,u\,du}-\frac{1}{2}\cos\.1[/tex]
[tex]\displaystyle\frac{1}{4}\left[\sin\,u\right]_{0}^{1}-\frac{1}{2}\cos\,1[/tex]
[tex]\displaystyle\frac{1}{4}\sin\,1-\frac{1}{2}\cos\,1[/tex]
amirite?